Improving Neural Networks: Neural Network Performance Management

Neural Networks    |    Intermediate
  • 12 videos | 1h 56m 18s
  • Includes Assessment
  • Earns a Badge
Rating 3.5 of 10 users Rating 3.5 of 10 users (10)
In this 12-video course, learners can explore machine learning problems that can be addressed with hyperparameters, and prominent hyperparameter tuning methods, along with problems associated with hyperparameter optimization. Key concepts covered here include the iterative workflow for machine learning problems, with a focus on essential measures and evaluation protocols; steps to improve performance of neural networks, along with impacts of data set sizes on neural network models and performance estimates; and impact of the size of training data sets on quality of mapping function and estimated performance of a fit neural network model. Next, you will learn the approaches of identifying overfitting scenarios and preventing overfitting by using regularization techniques; learn the impact of bias and variances on machine learning algorithms, and recall the approaches of fixing high bias and high variance in data sets; and see how to trade off bias variance by building and deriving an ideal learning curve by using Python. Finally, learners will observe how to test multiple models and select the right model by using Scikit-learn.

WHAT YOU WILL LEARN

  • Discover the key concepts covered in this course
    Describe the iterative workflow for machine learning problems with focus on essential measures and evaluation protocols
    Recognize the machine learning problems that can be addressed using hyperparameters along with the various hyperparameter tuning methods and the problems associated with hyperparameter optimization
    Recall the steps to improve the performances of neural networks along with impact of dataset sizes on neural network models and performance estimates
    Demonstrate the impact of the size of training dataset on the quality of mapping function and the estimated performance of a fit neural network model
    Recall the approaches of identifying overfitting scenarios and preventing overfitting using regularization techniques
  • Recognize the critical problems associated with neural networks along with the essential approaches of resolving them
    Describe the impact of bias and variances on machine learning algorithms and recall the approaches of fixing high bias and high variance in data sets
    Demonstrate how to trade off bias variance by building and deriving an ideal learning curve using python
    Recognize the various approaches of improving the performance of machine learning using data, algorithm, algorithm tuning and ensembles
    Demonstrate how to test multiple models and select the right model using scikit-learn
    Specify the machine learning problems that we can address using hyperparameters, describe the impact of bias and variances on machine learning algorithms and test multiple models using scikit-learn

IN THIS COURSE

  • 1m 30s
  • 11m 23s
    Upon completion of this video, you will be able to describe the iterative workflow for machine learning problems with a focus on essential measures and evaluation protocols. FREE ACCESS
  • Locked
    3.  Hyperparameter Optimization
    16m 56s
    After completing this video, you will be able to recognize the machine learning problems that can be addressed using hyperparameters, along with the various hyperparameter tuning methods and the problems associated with hyperparameter optimization. FREE ACCESS
  • Locked
    4.  Performance Management of Neural Networks
    13m 41s
    Upon completion of this video, you will be able to recall the steps to improve the performances of neural networks, along with the impact of dataset sizes on neural network models and performance estimates. FREE ACCESS
  • Locked
    5.  Impact of Dataset Sizes on Neural Network Models
    9m 46s
    In this video, find out how the size of the training dataset affects the quality of the mapping function and the estimated performance of a fit neural network model. FREE ACCESS
  • Locked
    6.  Overfitting Prevention and Management
    9m 51s
    Upon completion of this video, you will be able to recall the approaches of identifying overfitting scenarios and preventing overfitting using regularization techniques. FREE ACCESS
  • Locked
    7.  Neural Network Problems and Solutions
    7m 59s
    After completing this video, you will be able to recognize the critical problems associated with neural networks along with the essential approaches for resolving them. FREE ACCESS
  • Locked
    8.  Bias and Variance
    8m 57s
    Upon completion of this video, you will be able to describe the impact of bias and variance on machine learning algorithms and recall the approaches of fixing high bias and high variance in data sets. FREE ACCESS
  • Locked
    9.  Implementing Bias and Variance Trade Off
    11m 22s
    In this video, you will learn how to trade off bias and variance by building and deriving an ideal learning curve using Python. FREE ACCESS
  • Locked
    10.  Improving Performance Using Data and Algorithm
    9m 9s
    After completing this video, you will be able to recognize the various approaches of improving the performance of machine learning using data, algorithms, algorithm tuning and ensembles. FREE ACCESS
  • Locked
    11.  Model Evaluation and Selection
    8m 35s
    In this video, you will learn how to test multiple models and select the most appropriate model using Scikit-learn. FREE ACCESS
  • Locked
    12.  Exercise: Testing Models with Scikit-learn
    7m 10s
    Upon completion of this video, you will be able to specify the machine learning problems that we can address using hyperparameters, describe the impact of bias and variance on machine learning algorithms, and test multiple models using Scikit-learn. FREE ACCESS

EARN A DIGITAL BADGE WHEN YOU COMPLETE THIS COURSE

Skillsoft is providing you the opportunity to earn a digital badge upon successful completion on some of our courses, which can be shared on any social network or business platform.

Digital badges are yours to keep, forever.

PEOPLE WHO VIEWED THIS ALSO VIEWED THESE

Rating 4.4 of 65 users Rating 4.4 of 65 users (65)
Rating 3.8 of 9 users Rating 3.8 of 9 users (9)
Rating 4.4 of 29 users Rating 4.4 of 29 users (29)