Improving Neural Networks: Data Scaling & Regularization

Neural Networks    |    Intermediate
  • 10 videos | 1h 37m 10s
  • Includes Assessment
  • Earns a Badge
Rating 4.3 of 3 users Rating 4.3 of 3 users (3)
Explore how to create and optimize machine learning neural network models, scaling data, batch normalization, and internal covariate shift. Learners will discover the learning rate adaptation schedule, batch normalization, and using L1 and L2 regularization to manage overfitting problems. Key concepts covered in this 10-video course include the approach of creating deep learning network models, along with steps involved in optimizing networks, including deciding size and budget; how to implement the learning rate adaptation schedule in Keras by using SGD and specifying learning rate, epoch, and decay using Google Colab; and scaling data and the prominent data scaling methods, including data normalization and data standardization. Next, you will learn the concept of batch normalization and internal covariate shift; how to implement batch normalization using Python and TensorFlow; and the steps to implement L1 and L2 regularization to manage overfitting problems. Finally, observe how to implement gradient descent by using Python and the steps related to library import and data creation.

WHAT YOU WILL LEARN

  • Discover the key concepts covered in this course
    Describe the approach of creating deep learning network models along with the steps involved in optimizing the networks
    Implement the learning rate adaptation schedule in keras using sgd and specifying learning rate, epoch and decay
    Describe the concept of scaling data and list the prominent data scaling methods
    Describe the concept of batch normalization and internal covariate shift
  • Demonstrate how to implement batch normalization using python and tensorflow
    Implement l1 regularization to manage overfitting problems
    Implement l2 regularization to manage overfitting problems
    Demonstrate how to implement gradient descent using python
    Recall the prominent data scaling methods, implement l1 regularization and gradient descent using python

IN THIS COURSE

  • 1m 16s
  • 7m 48s
    After completing this video, you will be able to describe the approach of creating deep learning network models along with the steps involved in optimizing the networks. FREE ACCESS
  • Locked
    3.  Rate Adaption Schedule Implementation with Keras
    7m 22s
    In this video, find out how to implement the learning rate adaptation schedule in Keras using SGD and specifying learning rate, epoch and decay. FREE ACCESS
  • Locked
    4.  Scaling and Scaling Methods
    4m 36s
    Upon completion of this video, you will be able to describe the concept of scaling data and list the prominent data scaling methods. FREE ACCESS
  • Locked
    5.  Batch Normalization and Internal Covariate Shift
    7m 9s
    Upon completion of this video, you will be able to describe the concept of batch normalization and how it reduces internal covariate shift. FREE ACCESS
  • Locked
    6.  Implementing Batch Normalization
    8m 16s
    In this video, you will learn how to implement batch normalization using Python and TensorFlow. FREE ACCESS
  • Locked
    7.  Implementing L1 Regularization
    17m 56s
    In this video, you will learn how to implement L1 regularization to manage overfitting issues. FREE ACCESS
  • Locked
    8.  Implementing L2 Regularization
    9m 33s
    In this video, find out how to implement L2 regularization to avoid overfitting problems. FREE ACCESS
  • Locked
    9.  Implementing Gradient Descent
    13m 26s
    In this video, you will learn how to implement gradient descent using Python. FREE ACCESS
  • Locked
    10.  Exercise: L1 Regularization and Gradient Descent
    19m 48s
    After completing this video, you will be able to recall the prominent data scaling methods, implement L1 regularization and gradient descent, and use Python. FREE ACCESS

EARN A DIGITAL BADGE WHEN YOU COMPLETE THIS COURSE

Skillsoft is providing you the opportunity to earn a digital badge upon successful completion on some of our courses, which can be shared on any social network or business platform.

Digital badges are yours to keep, forever.

PEOPLE WHO VIEWED THIS ALSO VIEWED THESE

Rating 4.5 of 10 users Rating 4.5 of 10 users (10)
Rating 4.4 of 21 users Rating 4.4 of 21 users (21)
Rating 3.2 of 5 users Rating 3.2 of 5 users (5)