Statistical Rethinking: A Bayesian Course with Examples in R and STAN, Second Edition

  • 15h 23m
  • Richard McElreath
  • CRC Press
  • 2020

Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds your knowledge of and confidence in making inferences from data. Reflecting the need for scripting in today's model-based statistics, the book pushes you to perform step-by-step calculations that are usually automated. This unique computational approach ensures that you understand enough of the details to make reasonable choices and interpretations in your own modeling work.

The text presents causal inference and generalized linear multilevel models from a simple Bayesian perspective that builds on information theory and maximum entropy. The core material ranges from the basics of regression to advanced multilevel models. It also presents measurement error, missing data, and Gaussian process models for spatial and phylogenetic confounding.

The second edition emphasizes the directed acyclic graph (DAG) approach to causal inference, integrating DAGs into many examples. The new edition also contains new material on the design of prior distributions, splines, ordered categorical predictors, social relations models, cross-validation, importance sampling, instrumental variables, and Hamiltonian Monte Carlo. It ends with an entirely new chapter that goes beyond generalized linear modeling, showing how domain-specific scientific models can be built into statistical analyses.

Features

  • Integrates working code into the main text.
  • Illustrates concepts through worked data analysis examples.
  • Emphasizes understanding assumptions and how assumptions are reflected in code.
  • Offers more detailed explanations of the mathematics in optional sections.
  • Presents examples of using the dagitty R package to analyze causal graphs.
  • Provides the rethinking R package on the author's website and on GitHub.

About the Author

Richard McElreath studies human evolutionary ecology and is a Director at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany. He has published extensively on the mathematical theory and statistical analysis of social behavior, including his first book (with Robert Boyd), Mathematical Models of Social Evolution.

In this Book

  • The Golem of Prague
  • Small Worlds and Large Worlds
  • Sampling the Imaginary
  • Geocentric Models
  • The Many Variables & The Spurious Waffles
  • The Haunted DAG & The Causal Terror
  • Ulysses’ Compass
  • Conditional Manatees
  • Markov Chain Monte Carlo
  • Big Entropy and the Generalized Linear Model
  • God Spiked the Integers
  • Monsters and Mixtures
  • Models With Memory
  • Adventures in Covariance
  • Missing Data and Other Opportunities
  • Generalized Linear Madness
  • Horoscopes
  • Endnotes
  • Bibliography
SHOW MORE
FREE ACCESS

YOU MIGHT ALSO LIKE