Modern Big Data Architectures: A Multi-Agent Systems Perspective

  • 3h 24m
  • Dominik Ryżko
  • John Wiley & Sons (US)
  • 2020

Provides an up-to-date analysis of big data and multi-agent systems

The term Big Data refers to the cases, where data sets are too large or too complex for traditional data-processing software. With the spread of new concepts such as Edge Computing or the Internet of Things, production, processing and consumption of this data becomes more and more distributed. As a result, applications increasingly require multiple agents that can work together. A multi-agent system (MAS) is a self-organized computer system that comprises multiple intelligent agents interacting to solve problems that are beyond the capacities of individual agents. Modern Big Data Architectures examines modern concepts and architecture for Big Data processing and analytics.

This unique, up-to-date volume provides joint analysis of big data and multi-agent systems, with emphasis on distributed, intelligent processing of very large data sets. Each chapter contains practical examples and detailed solutions suitable for a wide variety of applications. The author, an internationally-recognized expert in Big Data and distributed Artificial Intelligence, demonstrates how base concepts such as agent, actor, and micro-service have reached a point of convergence―enabling next generation systems to be built by incorporating the best aspects of the field. This book:

  • Illustrates how data sets are produced and how they can be utilized in various areas of industry and science
  • Explains how to apply common computational models and state-of-the-art architectures to process Big Data tasks
  • Discusses current and emerging Big Data applications of Artificial Intelligence

Modern Big Data Architectures: A Multi-Agent Systems Perspective is a timely and important resource for data science professionals and students involved in Big Data analytics, and machine and artificial learning.

About the Author

DOMINIK RYŻKO is an Assistant Professor at the Institute of Computer Science at Warsaw University of Technology. His research interests include Big Data and Distributed Artificial Intelligence. He is widely published, serves on program committees at international conferences, and is Vice President of artificial intelligence and analytics at Adform, a global ad-tech platform provider. He also spent three years at Allegro Group as the Chief Data Scientist where he oversaw Data Science activities, design and methodology of experiments, and model building.

In this Book

  • Acronyms
  • Introduction
  • Evolution of IT Architectures and Paradigms
  • Sources of Data
  • Big Data Tasks
  • Cloud Computing
  • Big Data Architectures
  • Big Data Analytics, Mining, and Machine Learning
  • Physically Distributed Systems – Mobile Cloud, Internet of Things, Edge Computing
  • Summary
  • Bibliography
SHOW MORE
FREE ACCESS

YOU MIGHT ALSO LIKE

Rating 4.6 of 13 users Rating 4.6 of 13 users (13)
Rating 4.5 of 445 users Rating 4.5 of 445 users (445)
Rating 4.8 of 44 users Rating 4.8 of 44 users (44)