Computational Modeling in Biomedical Engineering and Medical Physics

  • 5h 57m
  • Alexandru Morega, Alin Dobre, Mihaela Morega
  • Elsevier Science and Technology Books, Inc.
  • 2021

Mathematical and numerical modelling of engineering problems in medicine is aimed at unveiling and understanding multidisciplinary interactions and processes and providing insights useful to clinical care and technology advances for better medical equipment and systems. When modelling medical problems, the engineer is confronted with multidisciplinary problems of electromagnetism, heat and mass transfer, and structural mechanics with, possibly, different time and space scales, which may raise concerns in formulating consistent, solvable mathematical models.

Computational Medical Engineering presents a number of engineering for medicine problems that may be encountered in medical physics, procedures, diagnosis and monitoring techniques, including electrical activity of the heart, hemodynamic activity monitoring, magnetic drug targeting, bioheat models and thermography, RF and microwave hyperthermia, ablation, EMF dosimetry, and bioimpedance methods. The authors discuss the core approach methodology to pose and solve different problems of medical engineering, including essentials of mathematical modelling (e.g., criteria for well-posed problems); physics scaling (homogenization techniques); Constructal Law criteria in morphing shape and structure of systems with internal flows; computational domain construction (CAD and, or reconstruction techniques based on medical images); numerical modelling issues, and validation techniques used to ascertain numerical simulation results. In addition, new ideas and venues to investigate and understand finer scale models and merge them into continuous media medical physics are provided as case studies.

In this Book

  • Physical, Mathematical, and Numerical Modeling
  • Shape and Structure Morphing of Systems with Internal Flows
  • Computational Domains
  • Electrical Activity of the Heart
  • Bioimpedance Methods
  • Magnetic Drug Targeting
  • Magnetic Stimulation and Therapy
  • Hyperthermia and Ablation