Algorithms Unlocked
- 4h 37m
- Thomas H. Cormen
- The MIT Press
- 2013
Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen -- coauthor of the leading college textbook on the subject -- provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems. Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order ("sorting"); how to solve basic problems that can be modeled in a computer with a mathematical structure called a "graph" (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.
About the Author
Thomas H. Cormen is Professor of Computer Science and former Director of the Institute for Writing and Rhetoric at Dartmouth College. He is the coauthor (with Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein) of the leading textbook on computer algorithms, Introduction to Algorithms (third edition, MIT Press, 2009).
In this Book
-
What Are Algorithms and Why Should You Care?
-
How to Describe and Evaluate Computer Algorithms
-
Algorithms for Sorting and Searching
-
A Lower Bound for Sorting and How to Beat It
-
Directed Acyclic Graphs
-
Shortest Paths
-
Algorithms on Strings
-
Foundations of Cryptography
-
Data Compression
-
Hard? Problems